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Contours of conductive heat flow derived from wells \
around the Roosevelt Hot Springs hydrothermal

S| system. Most values are from the temperature

;_ gradients in wells less than 200 m deep. Very high

4 heat flows over the hydrothermal system (pink shaded

| area) reflect high temperature gradients overlying
upflowing hot water, which at shallow depth is

4| constrained by boiling-point-for-depth conditions.
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Recent re-evaluation of thermal data from over 100 wells drilled mostly during the 1970s and 1980s in the
area of Roosevelt Hot Springs (RHS) has refined earlier interpretations of the thermal regime. These data
have been combined with pre-existing gravity and magnetotelluric data to construct a 3-D model of the
area as part of the site characterization phase of U.S. Department of Energy’s Frontier Observatory for
Research in Geothermal Energy (FORGE) initiative. The project goal is to create an enhanced geothermal
system (EGS) reservoir in crystalline rock where temperatures of 175 to 225°C are present at depths Expactod thormairogimo a
between 1.5 and 4 km to test development concepts and technology. The 3-D model is amply supported e . . : EIEERNRS < INE RS S\ .
by well data, both in terms of suitable temperatures and depth to crystalline basement (Precambrian . B N B il RN 1 ' | West of the hydrothermal system, delineated by the
gneiss and Tertiary plutons), and shows that FORGE temperature and lithologic requirements can be met i N ’

+ 200
eservoir (10 wells) 2000

1000
4000

2000

Depth (m)
Depth (ft)

[
o
=]

Acord-1 \
65°Clkm |
N | 215 8000 120 + 20 mWim? |
1

\

%\
a
\
Y
\
%
. \
H 300 \
. \ %
\
! \
Ny 10000 s50 1 \ R
1

\ FORGE Site \
=100°C/km
1 180 + 40 mW/m?
400 + (28T & 20 MYIm |
N 12000 \ A

r 800

Depth (m)

~.
T a r 1000

DOE criteria for
FORGE reservoir

b T v / 4’| Opal Mound fault, the thermal regime is conductive at

over an area of at least 100 kmZ2. The total volume of crystalline basement rock with temperatures over & B i) = g B2 persare () _— [ .| depth and follows a patterf; of decreasing heat flow
175°C above 4 km depth is more than 100 k.m3. Temperatures greater than 175°C-within pIutonic. | Likely thermal regime at the Milford FORGE deep tOW/C’fdf the west. A'A Zeflnez t7€ ends of the
basement rock are expected at depths ranging from about 1.8 to 3.0 km, depending on the specific geologic cross section shown below.
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km map, granite hotter than 175°C extends
significantly west and north of Acord-1, but has
not been shown because of inadequate well
control. The red shading shows the extent of the
Roosevelt Hydrothermal System based on For additional information, see the FORGE website at http://energy.gov/eere/forge/forge-home.

pressure measurements in deep wells. / Qcomplete list of references is included in the accompanying paper. /

m beneath the ground surface, which is about
k1325 m asl near the center of the valley.
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